
ICS 104 - Introduction to Programming in Python and C

Programming	with	numbers	and	Strings	

Reading	Assignment	

 Chapter 2 Sections 1, 2, 4 and 5.

Chapter	Learning	Outcomes	

At	the	end	of	this	chapter,	you	will	be	able	to	

 define and use variables and constants
 write arithmetic expressions and assignment statements
 understand the properties and limitations of integers and floating-point numbers
 appreciate the importance of comments and good code layout
 write arithmetic expressions and assignment statements
 create programs that read and process inputs, and display the results
 learn how to use Python strings

Variables	

Why	do	we	need	variables?	

 To carry out computation, we need to store values in order to use them later on.
 These values are stored in variables.
 Let us try to comprehend the use of variables by solving the following problem:

Soft	Drinks:	Which	is	more	Economic?	

 Soft drinks are sold in cans and bottles.
 A store offers a six-pack of 12-ounce cans for the same price as a two-liter bottle.
 Find the volume (in liters) of a six-pack of soda cans and the total volume of a six-pack and a

two-liter bottle.
 Note that 12 fluid ounces equal approximately 0.355 liters.

	

	

	

	

Defining	Variables	
 A variable is a storage location in a computer program.
 Each variable has a name and holds a value.

 Just as a parking space has an identifier J053 and contents car

Assignment	Statements	
 An assignment statement is used to place a value into a variable

In []:
cansPerPack = 6

 How does the assignment statment work?
 The right hand side of the = sign is first evaluated (to the value 6).
 The value is assigned to the variable on the left hand side of the = sign (to the

variable cansPerPack).

 Once a variable is defined, it can be used in other statements

In []:
print(cansPerPack)

 If an existing variable is assigned a new value, that value replaces the previous contents of
the variable.

In []:
cansPerPack = 8

In []:
print(cansPerPack)

Assignment	is	not	Equality	in	Algebra	
 Is the statement

 cansPerPack = cansPerPack + 2

correct in Algebra?

 How about in Python?

In []:
cansPerPack = 8

cansPerPack = cansPerPack + 2

print(cansPerPack)

 So, how does the assignment cansPerPack = cansPerPack + 2 execute in python?

 First, the right hand side is executed
 This is done by fetching the current value of the variable cansPerPack
 Then, carrying out the addition

 Second, the value of the addition is stored in the variable cansPerPack

Number	Types	

Values	and	Types	

 **2**, **"Hello World"** and **8.4** are values
 Each value belongs to a **data type**

 **2** is an integer **int**
 **"Hello World"** is a string **str**
 **8.4** is a float **float**
 **2** and **8.4** are called number literals.

Why	Data	Types?	

 A data type of a value determines

 how the data type is represented in the computer, and
 what operations can be performed on that data.

Two	Categories	of	Data	Types	in	Python	
 Primitive data type

 A data type provided by the language itself (e.g. **int**)
 User-defined data type

 A data type defined by the programmer (covered in Chapter 9: Objects and
Classes)

	

Number	literals	in	Python	

 The value determines the type of the variable.
 For example, the following piece of code is correct, but not recommended

In []:
taxRate = 5

print(taxRate)

taxRate = 5.5

print(taxRate)

taxRate = "five point five"

print(taxRate)

 This is not a good idea, as it may lead to an error if you use the wrong operation on the
variable

In []:
taxRate = taxRate + 10

 Once a variable is initialized with a value of a type, keep storing values of the same type.

	

	

	

Rules	for	Variable	Names	
 Names must start with a letter or the underscore (_) character.
 The remaining characters (if any) must be letters, digits or underscores.

 Symbols such as ? or % cannot be used in a variable name.
 Spaces cannot exist within a variable name.

 Names are case sensitive.
 Reserved words by python cannot be used as variable names. (e.g., **if** and **class**)

 Which of the following names are proper variable names? canVolume1 , x ,
CanVolume , 6pack , can volume , class , ltr/fl.oz

 canVolume1 is proper

 x is proper

 CanVolume is proper

 6pack is not proper

 can volume is not proper

 class is not proper

 ltr/fl.oz is not proper

Recommended	Variable	Name	Conventions	
 These are not strict rules for variable names, but are rules of good taste that you should

respect when writing code.
 Use a descriptive name, such as cansPerPack, than a terse name, such as cpp

o If the variable name consists of more than one word, start the word with a
capital letter, as shown above.

 A variable starts with a small letter
 A constant consists of all capital letters, where words are separated by the

underscore _ character, such as CAN_VOLUME
 A user defined data type starts with a capital letter (as we will see later), such

as GraphicsWindow.

	

	

	

	

Therefore,	

Constants	
 A constant variable, or simply a constant, is a variable whose value should not be changed

after it has been assigned an initial value.
 Some languages provide an explicit mechanism of declaring constants.

 Hence, any attempt to change it after it has been assigned generates a syntax error.
 Python leaves it to the programmer to make sure that constants are not changed.

 Hence, the use of all capital letters for naming constants tells you and other
programmers that you should not change the value of this variable once it is
assigned.

 Constants can make your code much more understandable.

 For example, compare the following two statements:
 totalVolume = bottles * 2
 totalVolume = bottles * BOTTLE_VOLUME

 Note that in the case where the bottle volume is changed from 2 to 2.5, then
 in the first case, you need to change every line of code that has volume 2 to 2.5.
 in the second case, all you need to do is change the value of the

constant BOTTLE_VOLUME to 2.5 in one line ONLY. Every other occurrence
of BOTTLE_VOLUME in the code will automatically have the new volume value.

	

	

	

	

Comments	
 As your programs get more complex, you should add comments, explanations for human

readers of your code.

In []:
CAN_VOLUME = 0.355 # Liters in a 12-ounce can

 This comment explains the significance of the value 0.355 to a human reader.

 Python's interpreter does not execute comments at all.
 It ignores everything from a # delimiter to the end of the line.

Why	Write	Comments?	
 Helps programmers who read your code understand your intent.

 Helps you when you review your code (after some time).

How	to	Write	Comments?	
 Provide a comment at the top of your source file that explains the purpose of the program.

 The textbook follows the following style:

In []:

This program computes the volume (in liters) of a six-pack of soda cans.

Time	to	Solve	the	Problem	at	the	Beginning	of	this	
Chapter	
Soft	Drinks:	Which	is	more	Economic?	

 Soft drinks are sold in cans and bottles.
 A store offers a six-pack of 12-ounce cans for the same price as a two-liter bottle.
 Which one should you buy?

	

	

	

Solution	Steps	
 Compute the totalVolume you get when you buy a six-pack

 Define CAN_VOLUME and the number of cansPerPack
 totalVolume = cansPerPack * CAN_VOLUME
 print the totalVolume

 Now you can compare the totalVolume to the value 2.0 and determine which one to buy

In []:

This program computes the volume (in liters) of a six-pack of soda

cans and the total volume of a six-pack and a two-liter bottle.

Liters in a 12-ounce can and a two-liter bottle.

CAN_VOLUME = 0.355

BOTTLE_VOLUME = 2

Number of cans per pack.

cansPerPack = 6

Calculate total volume in the cans.

totalVolume = cansPerPack * CAN_VOLUME

print("A six-pack of 12-ounce cans contains", totalVolume, "liters.")

Calculate total volume in the cans and a two-liter bottle.

totalVolume = totalVolume + BOTTLE_VOLUME

print("A six-pack and a two-liter bottle contain", totalVolume, "liters.")

Final	Tips	on	Variables	
 Do not use undefined variables

 canVolume = 12 * literPerOunce # Error
 literPerOunce = 0.0296

 Choose descriptive variable names
 canVolume is better than cv

 Do not use magic numbers
 totalVolume = cansPerPack * 0.355

	

	

2.2	Arithmetic	
Basic	Arithmetic	Operations	

 Python supports addition +, subtraction -, multiplication * and division /
 + - * / are called operators
 The combination of variables, literals, operators, and parentheses is called an

arithmetic expression
 For example, the mathematical formula a+b2a+b2 is written in python as (a + b) / 2

 Note that the parentheses are used to determine in which order the parts of the
expression are computed.

 For example, which mathematical formula is a + b / 2?

 Python uses the exponential operator ∗∗∗∗ to denote the power operation.
 For example, a2a2 is a ** 2

Precedence	of	Arithmetic	Operators	
 Python uses the precedence rules for algebraic notation

Precedence Operator(s) Description

1 ()() Parentheses

2 ∗∗∗∗ Power

3 ∗,/∗,/ Multiplication and Division

4 +,−+,− Addition and Subtraction

Order	of	Evaluation	of	Arithmetic	Operators	
 Addition, subtraction, multiplication and division are left associative, i.e. they are evaluated

from left to right.
 For example, 10 + 2 + 3 is evaluated as (10+2)+3=15(10+2)+3=15

 The power operation is right associative, i.e. it is evaluated from right to left.
 For example, 10 ** 2 ** 3 is evaluated as 10231023 which is the same

as 108=100000000108=100000000

	

	

	

	

Example	

 The mathematical expression b×(1+r100)nb×(1+r100)n becomes

b * (1 + r / 100) ** n

 The expression is analyzed as follows

Floor	Division	and	Remainder	
 Division of two integers results in a floating-point value

 7 / 4 yields 1.75
 The floor division operator // when applied on positive integers computes the quotient and

discards the fractional part.
 7 // 4 yields 1

 The modulus operator % can be used to get the remainder of the floor division.
 7 % 4 yields 3, the remainder of the floor division of 7 by 4.
 Some also call it modulo or mod

Floor	Division	and	Remainder	

Calling	Functions	
 We have been using the print function to display information, but there are many other

functions available in Python.
 Most functions return a value.

 i.e., when the function completes its task, it passes a value back to the point where
the function was called.

 For example, the call abs(-123) returns the value 123.
 The value returned by a function can be stored in a variable.

 distance = abs(x)
 Note that x is called the argument of the abs function.

 It can also be used anywhere that a value of the same type can be used
 print("The distance from the origin is ", abs(x))

Arguments	of	a	Function	
 When calling a function, you must provide the correct number of arguments.

 abs(-10, 2) or abs() will generate an error.
 Hence, the abs function requires exactly one argument.

In []:
abs(-10)

 Some functions have optional arguments that you only provide in certain situations
 For example, in the round function

o round(7.625) returns the nearest integer, i.e. 8
o round(7.625,2) returns the nearest floating-point with 2 decimal digits,

i.e. 7.63

In []:
round(7.625)

 Some functions take an arbitrary number of arguments
 For example, the max and min functions.

o min(7.25, 10.95, 5.95, 6.05, 8) returns the minimum of the
function's arguments; in this case the number 5.95

In []:
min(7.25, 10.95, 5.95, 6.05, 8)

Calling	Functions	

Libraries	
 A library is a collection of code that has been written and translated by someone else, ready

for you to use in your program.
 A standard library is a library that is considered part of the language and must be

included with any Python system.

 Python’s standard library is organized into modules.
 Related functions and data types are grouped into the same module.

Mathematical	Functions	
 Python’s math module includes a number of mathematical functions.
 You must import it before you can use any of its functions

 Note that you can use the print function without the use of import, since it is one of
the built-in functions (part of the Python language and can be used directly in your
programs).

In []:
from math import sqrt

y = sqrt(25)

print("y = ", y)

 To import more than one function from math, use from math import *

	

	

	

	

Arithmetic	Expressions	Examples	

Student	Activity	

 The volume of a sphere is given by

V=43πr3V=43πr3

If the radius is given by a variable radius that contains a floating-point value, write a Python
expression for the volume.

In []:
Volume Expression

radius = 2.4

2.4	Strings	
 A string is a sequence of characters

 Characters include letters, numbers/digits, punctuation, spaces, special symbols
and so on.

 A string literal denotes a particular string (e.g. "Hello")
 Just as a number literal (e.g. 34) denotes a particular number.
 String literals are specified by enclosing a sequence of characters within a matching

pair of either single or double quotes.

In []:
print("This is a string. ", 'So is this.')

 How can I form the strings I'm a student or He said: "You did it!"?

In []:
print("I'm a student", 'He said: "You did it!"')

 The number of characters in a string is called the length of the string.
 For example, "Harry" is of length _____ and "World" is of length ______
 An empty string is a string with no characters. It is of length zero and is written

as "" or ''

 Python's len function returns the length of the argument string.

In []:
length = len("World!")

print(length)

String	Concatenation	
 Given two strings such as Ahmad and Saleem, you can concatenate them to one long

string.

In []:
firstName = "Ahmad"

secondName = "Saleem"

name = firstName + secondName

print (name)

 Note that if one of the operands of the + operator is a string, then all of them should be
strings, otherwise a syntax error will occur.

In []:
print("The character with value 7 is the ", chr(1710))

String	Repetition	
 Given a string such as -, you can repeat it n times, where n is an integer using the string

repetition operator *

In []:
dashes = "-" * 50

print(dashes)

Converting	between	Numbers	and	Strings	
 Since you cannot concatenate a string and integer, Python provides the str function to

convert an integer to a string.

In []:
id = 2019873410
id=- 1
email = "s" + str(id) + "@kfupm.edu.sa"
print(email)

 Conversely, you can turn a string representing a number into its corresponding numerical
value using the **int** and **float** function.

In []:
id = int("1729")

price = float("17.29")

print("id is", id, " and price is", price)

Strings	and	Characters	
 Strings are sequences of Unicode characters.

 Individual characters of a string can be accessed based on their position in the string
 The position is called the index of the character.
 The index starts from position 0, followed by 1 for the second character, ... and so

on.

 name = "Harry"

In []:
name = "Harry"

first = name[0]

last = name[4]

 The index value must be within the valid range of character positions
 0 .. len(name)-1

 otherwise, an "index out of range" exception will be generated at run time.

	

	

	

	

	

Student	Activity	

 What are the results of the following statements

In []:
string = "Py"

string = string + "thon"

In []:
print(string)

print ("Please" + " enter your name: ")
In []:
print("Please" +

 " enter your name: ")

 What is the result of the following statements

In []:
team = str(49) + "ers"

In []:
print("team = ", team)

In []:
greeting = "H & S"

n = len(greeting)

In []:
print("n = ", n)

In []:
string = "Harry"

n = len(string)

mystery = string[0] + string[n - 1]

In []:
print(mystery)

	

	

	

	

	

2.5	Input	and	Output	
 Asking the user to provide input values makes programs more flexible.

 As opposed to having fixed values.

 For example, You will have to change the values of first and second in the program
below every time you would like to use different values.

In [1]:

This program prints a pair of initials.

Set the names of the couple.

first = "Rodolfo"

second = "Sally"

Compute and display the initials.

initials = first[0] + "&" + second[0]

print(initials)

R&S

 When a program asks for user input, it should first print a message (called a prompt) that
tells the user which input is expected.

 In Python, displaying a prompt and reading the keyboard input is combined in one operation.

In []:

This program obtains two names from the user and prints a pair of initials

.

Obtain the two names from the user.

first = input("Enter your first name: ")

second = input("Enter your significant other's first name: ")

Compute and display the initials.

initials = first[0] + "&" + second[0]

print(initials)

 Note that the output of the input function is always a string.

	

Reading	Numerical	Input	
 What if we need to read a numerical input?

 Use the string conversion functions int and float on the output string

In [2]:
userInput = input("Please enter the number of bottles: ")

numberOfBottles = int(userInput)

bottleVolume = float(input("Enter the volume of each bottle: ")) # preferred

style

print("The number of bottles = ", numberOfBottles, " and the bottle volume =

", bottleVolume)

Please enter the number of bottles: 12

Enter the volume of each bottle: 3.2

The number of bottles = 12 and the bottle volume = 3.2

Formatted	Output	

Formatting	Floating	Point	Values	

 When you print the result of a computation, you often want to control its appearance.

Instead of Would Like to Print

Price per liter: 1.215962441314554 Price per liter: 1.22

 We can do that through the string format operator %

 The following command displays the price with two digits after the decimal point:

In [3]:
price = 1.215962441314554

print("%.2f" % price)

1.22

 You can also specify a field width (the total number of characters, including spaces)

In []:
price = 1.215962441314554

print("%7.2f" % price)

 %7.2f is called a format specifier.
 See what happens when you play with the values of the format specifier.

Formatting	Integer	and	String	Values	

 Use %d for integer values

In []:
numberOfBottles = 106

print("%d" % numberOfBottles)

 Use %s for string values

In []:
title2="Price:"

print("%-10s" % title2)

Multiple	Format	Specifiers	
 One can have more than one format specifier in the format string
 In this case, the variables to the right of the string format operator % need to be included

between parentheses and separated by commas.

In []:
quantity = 203

price = 183.4

title1 = "Quantity:"

title2 = "Price:"

print("%10s %10d" % (title1, quantity))

print("%10s %10.2f" % (title2, price))

 You can play with different values and see what happens to the output
 print("%-10s %10d" % (title1, quantity))
 print("%-10s %10.2f" % (title2, price)) # Strings are left aligned, numbers are right

aligned

 print("%10s %-10d" % (title1, quantity)) # Strings are right aligned, numbers are left

aligned
 print("%10s %-10.2f" % (title2, price))

 print("%-10s %-10d" % (title1, quantity)) # Strings and numbers are left aligned
 print("%-10s %-10.2f" % (title2, price))

	

	

	

	

String	Format	Operator	

 The following statement

In []:
quantity = 24

total = 17.29

print("Quantity: %d Total: %10.2f" % (quantity, total))

 produces

Student	Activity	

 What is problematic about the following statement sequence?

In []:
userInput = input("Please enter the number of cans")

cans = int(userInput)

	

	

	

	

Student	Activity	

In []:
To Print Bottles and Cans

bottles = 8

cans = 24

Insert your solution here

In []:
Different solutions:

print("Bottles: %8d" % bottles)

print("Cans: %8d" % cans)

print("Bottles: %8d" % bottles)

print("Cans: %11d" % cans)

print("%-8s %8d" % ("Bottles:", bottles))

print("%-8s %8d" % ("Cans:", cans))

